Watch “Glorious Accident Interview with Rupert Sheldrake part 1” on YouTube


Wikipedia, We Have a Problem | a personal case study


Wikipedia, We Have a Problem | a personal case study.

Interview Transcript: Hugh Ross – Apologetics 315


Interview Transcript: Hugh Ross – Apologetics 315.

Science or naturalism? The contradictions of Richard Dawkins – Opinion – ABC Religion & Ethics (Australian Broadcasting Corporation)


Science or naturalism? The contradictions of Richard Dawkins – Opinion – ABC Religion & Ethics (Australian Broadcasting Corporation).

WHAT BIOLOGISTS TALK ABOUT WHEN THEY TALK ABOUT LIFE– David Berlinski


from The Devil’s Delusion: Atheism and its Scientific Pretensions (p. 192-197). Perseus Books Group. Kindle Edition.

davidberlinski

In the summer of 2007, Eugene Koonin, of the National Center for Biotechnology Information at the National Institutes of Health, published a paper entitled “The Biological Big Bang Model for the Major Transitions in Evolution.” The paper is refreshing in its candor; it is alarming in its consequences. “Major transitions in biological evolution,” Koonin writes, “show the same pattern of sudden emergence of diverse forms at a new level of complexity” (italics added). Major transitions in biological evolution? These are precisely the transitions that Darwin’s theory was intended to explain. If those “major transitions” represent a “sudden emergence of new forms,” the obvious conclusion to draw is not that nature is perverse but that Darwin was wrong. “The relationships between major groups within an emergent new class of biological entities,” Koonin goes on to say, “are hard to decipher and do not seem to fit the tree pattern that, following Darwin’s original proposal, remains the dominant description of biological evolution.” The facts that fall outside the margins of Darwin’s theory include “the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla.” That is, pretty much everything. Koonin is hardly finished. He has just started to warm up. “In each of these pivotal nexuses in life’s history,” he goes on to say, “the principal ‘types’ seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate ‘grades’ or intermediate forms between different types are detectable.” The phrase intermediate forms has a particular poignancy in context. It has been by an appeal to those intermediate forms that a very considerable ideology has been created. To doubt their existence is to stand self-accused. To go further and suggest that they are, in fact, imaginary evokes a frenzy of fearful contempt so considerable as to make civilized discourse impossible. Koonin’s views do not represent the views of the Darwinian establishment. If they did, there would be no Darwinian establishment. They are not uncontested. And it may well be that they are exaggerated. Koonin is nonetheless both a serious biologist and a man not well known for a disposition to self-immolation. And in a much more significant sense, his views are simply part of a much more serious pattern of intellectual discontent with Darwinian doctrine. Writing in the 1960s and 1970s, the Japanese mathematical biologist Motoo Kimura argued that on the genetic level—the place where mutations take place—most changes are selectively neutral. They do nothing to help an organism survive; they may even be deleterious. A competent mathematician and a fastidious English prose stylist, Kimura was perfectly aware that he was advancing a powerful argument against Darwin’s theory of natural selection. “The neutral theory asserts,” he wrote in the introduction to his masterpiece, The Neutral Theory of Molecular Evolution, “that the great majority of evolutionary changes at the molecular level, as revealed by comparative studies of protein and DNA sequences, are caused not by Darwinian selection but by random drift of selectively neutral or nearly neutral mutations” (italics added). This is radical doctrine. Waves of probability ebb and flow throughout the molecular structure of a living organism. Invisible to the scrutinizing force of natural selection, mutations drift through the currents of time. Whether a mutation is fixed within a population or whether it is simply washed away is a matter of chance. The neutral theory of molecular evolution was never destined to achieve wide favor among Darwinian biologists. Kimura’s treatise is framed as a powerful but difficult mathematical argument. But population geneticists understood its importance, even if they disagreed in some of its details. To the extent that the neutral theory is true, Darwin’s theory is not. This has prompted at least certain population geneticists to deplore in print the sheer effrontery that is so conspicuous a feature of the popular literature devoted to Darwin’s theory. Richard Dawkins has appeared as tempting a squab within the tent of population genetics as he has long seemed without. Writing in the Proceedings of the National Academy of Sciences, the evolutionary biologist Michael Lynch observed that “Dawkins’s agenda has been to spread the word on the awesome power of natural selection.” The view that results, Lynch remarks, is incomplete and therefore “profoundly misleading.” Lest there be any question about Lynch’s critique, he makes the point explicitly: “What is in question is whether natural selection is a necessary or sufficient force to explain the emergence of the genomic and cellular features central to the building of complex organisms.” But if it is quite possible that natural selection is neither necessary nor sufficient to account for the complexity of living systems, then it is also possible that it is of no relevance to living systems whatsoever. The demotion of natural selection from biological superpower to ideological sad sack throws into bright relief an obvious question: How to explain on the basis of a random walk the startling coherence and complexity of living organisms? If the question is obvious, so, too, is its answer: We have no idea. “The general foundations for the evolution of ‘higher’ from ‘lower’ organisms,” Emile Zuckerkandl has written, “seems so far to have largely eluded analysis ” (italics added). This is surely true. But the phrase eluded analysis conveys a current of intellectual optimism at odds with the facts. Something that has so far eluded analysis can hardly be assigned to a force that has so far eluded demonstration. It is in this context that Daniel Dennett’s assertion that natural selection has been demonstrated “beyond all reasonable doubt” must be judged for what it is: It is the ecclesiastical bull of a most peculiar church, a cousin in kind to an ecclesiastical bluff. When Steven Pinker affirms that “natural selection is the only explanation we have of how complex life can evolve,” he is very much in the inadvertent position of the apostles. Much against his will, he is bearing witness. In all this, it is the reaction among the faithful that provokes no surprise. Within minutes of the publication of Koonin’s paper, a call for censorship went up over the Internet. “Well,” one solemn donkey wrote, “since it is clear that this paper will be on every ID/creationist blog on the planet in under 12 hours, I might as well put in my 2 cents early.” He might as well. And those two cents? What did they amount to? One cent was devoted to a counsel of caution: “I think Koonin should give a little credit where credit is due to gradual, stepwise evolution.” The second cent was spent on a cry of alarm: “Sometimes you’ve got to wonder how many hangovers (i.e., creationist quote-mining and general confusion over the status of evolution outside of the specialist community, and needless wrangling within the specialist community) could be avoided if scientists would exercise just a little caution during the party (i.e., spending a little time soberly comparing their revolutionary ideas with more prosaic explanations).” The words if scientists would exercise just a little caution have a meaning all their own. They are written in code. They convey the need, apparently imperative, for biologists to keep bad news to themselves. What is left is the “general confusion” that the public so often suffers when it comes to Darwin and Darwinism. On this matter, biologists are not at all confused. Whatever the degree to which Darwin may have “misled science into a dead end,” the biologist Shi V. Liu observed in commenting on Koonin’s paper, “we may still appreciate the role of Darwin in helping scientists [win an] upper hand in fighting against the creationists.” It is hard to be less confused than that.

Berlinski, David (2009-08-26). The Devil’s Delusion: Atheism and its Scientific Pretensions (p. 192-197). Perseus Books Group. Kindle Edition.

Streaming Media – DNA Enigma: – Where Did The Information Come From?


Streaming Media – DNA Enigma: – Where Did The Information Come From?.

Expelled: No Intelligence Allowed (full movie) – YouTube


Expelled: No Intelligence Allowed (full movie) – YouTube.

An expose about how materialistic naturalism has a stranglehold on Academic Freedom–seems as if flat earth thinking has  gripped science hierarchy.

Science, Religion and Power by Rupert Sheldrake,


sheldrake

from Science Set Free: 10 Paths to New Discovery; Prologue: Science, Religion and Power

[Published in UK as The Science Delusion]

fbacon

The scientific priesthood Francis Bacon (1561– 1626), a politician and lawyer who became Lord Chancellor of England, foresaw the power of organized science more than anyone else. To clear the way, he needed to show that there was nothing sinister about acquiring power over nature. When he was writing, there was a widespread fear of witchcraft and black magic, which he tried to counteract by claiming that knowledge of nature was God-given, not inspired by the devil. Science was a return to the innocence of the first man, Adam, in the Garden of Eden before the Fall.

Bacon argued that the first book of the Bible, Genesis, justified scientific knowledge. He equated man’s knowledge of nature with Adam’s naming of the animals. God “brought them unto Adam to see what he would call them, and what Adam called every living creature, that was the name thereof” (Genesis 2: 19– 20). This was literally man’s knowledge, because Eve was not created until two verses later. Bacon argued that man’s technological mastery of nature was the recovery of a God-given power, rather than something new. He confidently assumed that people would use their new knowledge wisely and well: “Only let the human race recover that right over nature which belongs to it by divine bequest; the exercise thereof will be governed by sound reason and true religion.” [1]

The key to this new power over nature was organized institutional research. In New Atlantis (1624), Bacon described a technocratic Utopia in which a scientific priesthood made decisions for the good of the state as a whole. The Fellows of this scientific “Order or Society” wore long robes and were treated with a respect that their power and dignity required. The head of the order traveled in a rich chariot, under a radiant golden image of the sun. As he rode in procession, “he held up his bare hand, as he went, as blessing the people.”

The general purpose of this foundation was “the knowledge of causes and secret motions of things; and the enlarging of human empire, to the effecting of all things possible.” The Society was equipped with machinery and facilities for testing explosives and armaments, experimental furnaces, gardens for plant breeding, and dispensaries. [2]

This visionary scientific institution foreshadowed many features of institutional research, and was a direct inspiration for the founding of the Royal Society in London in 1660, and for many other national academies of science. But although the members of these academies were often held in high esteem, none achieved the grandeur and political power of Bacon’s imaginary prototypes. Their glory was continued even after their deaths in a gallery, like a Hall of Fame, where their images were preserved. “For upon every invention of value we erect a statue to the inventor, and give him a liberal and honourable reward.” [3]

In England in Bacon’s time (and still today) the Church of England was linked to the state as the established church. Bacon envisaged that the scientific priesthood would also be linked to the state through state patronage, forming a kind of established church of science. And here again he was prophetic. In nations both capitalist and Communist, the official academies of science remain the centers of power of the scientific establishment. There is no separation of science and state. Scientists play the role of an established priesthood, influencing government policies on the arts of warfare, industry, agriculture, medicine, education and research.

Bacon coined the ideal slogan for soliciting financial support from governments and investors: “Knowledge is power.”[4] But the success of scientists in eliciting funding from governments varied from country to country. The systematic state funding of science began much earlier in France and Germany than in Britain and the United States where, until the latter half of the nineteenth century, most research was privately funded or carried out by wealthy amateurs like Charles Darwin. [5]

In France, Louis Pasteur (1822– 95) was an influential proponent of science as a truth-finding religion, with laboratories like temples through which mankind would be elevated to its highest potential:

Take interest, I beseech you, in those sacred institutions which we designate under the expressive name of laboratories. Demand that they be multiplied and adorned; they are the temples of wealth and of the future. There it is that humanity grows, becomes stronger and better. [6]

By the beginning of the twentieth century, science was almost entirely institutionalized and professionalized, and after the Second World War expanded enormously under government patronage, as well as through corporate investment. [7] The highest level of funding is in the United States, where in 2008 the total expenditure on research and development was $ 398 billion, of which $ 104 billion came from the government. [8] But governments and corporations do not usually pay scientists to do research because they want innocent knowledge, like that of Adam before the Fall. Naming animals, as in classifying endangered species of beetles in tropical rain forests, is a low priority. Most funding is a response to Bacon’s persuasive slogan “knowledge is power.”

By the 1950s, when institutional science had reached an unprecedented level of power and prestige, the historian of science George Sarton approvingly described the situation in a way that sounds like the Roman Catholic Church before the Reformation:

Truth can be determined only by the judgment of experts. Everything is decided by very small groups of men, in fact, by single experts whose results are carefully checked, however, by a few others. The people have nothing to say but simply to accept the decisions handed out to them. Scientific activities are controlled by universities, academies and scientific societies, but such control is as far removed from popular control as it possibly could be. [9]

Bacon’s vision of a scientific priesthood has now been realized on a global scale. But his confidence that man’s power over nature would be guided by “sound reason and true religion” was misplaced.

Sheldrake, Rupert (2012-09-04). Science Set Free: 10 Paths to New Discovery (p. 13-16). Random House, Inc.. Kindle Edition.


[1] Collins, in Carr (ed.) (2007), pp. 50.

[2] Bacon (1951), pp. 290– 91.

[3] Ibid., p. 298..

[4] Fara (2009), p. 132.

[5] Kealey (1996).

[6] Dubos (1960), p. 146.

[7] Kealey.

[8] National Science Board (2010), Chapter 4.

[9] Sarton (1955), p. 12.

Reasons To Believe : Anthropic Principle: A Precise Plan for Humanity by Hugh Ross


Reasons To Believe : Anthropic Principle: A Precise Plan for Humanity.